Skip to Navigation Skip to Content Skip to Footer

Microbiology Logo Microbiology & Immunology
Te Tari Moromoroiti me te Ārai Mate

Dr Leah Smith

Research interests:

Bacteriophages, Genomics, CRISPR-Cas, Deep-sequencing, Biofilms, Gene regulation

Current research:

My research focuses on bacterial interactions with mobile genetic elements, including bacterial viruses (phages). My postdoctoral work focuses on elucidating the mechanisms of bacterial CRISPR-Cas defense systems against nucleus-forming jumbo phages. My PhD work investigated the regulation of bacterial defenses, where I developed a high-throughput screen (SorTn-seq) to identify regulatory networks in bacteria. 

Using my newly-awarded Marsden Fast-start grant, I aim to apply my research expertise to enhance the efficacy of phage therapy for clinical and environmental applications.


Google Scholar:


Postgraduate Student (co)-supervision:


Marina Mahler, current

Kate Harding, current

Natalie Kyte, current

BSc (Hons):

Lela Hassan, 2022

Research Funding and Awards:

2024     PI on Marsden Fast-Start Grant, Royal Society of New Zealand

2023     PI on BMS Kickstarter Funding, University of Otago

2022     AI on Dean's Bequest Grant, University of Otago

2022     Awarded an International Society for Viruses of Microorganisms (ISVM) Early Career Scientist Grant

2022     Thesis placed on the University of Otago Health Sciences Divisional List of Exceptional Doctoral theses

2019     Awarded a University of Otago Division of Health Sciences Travel Grant

2016     University of Otago Doctoral Scholarship, University of Otago, New Zealand

2015     Chancellor’s Centennial Scholarship. University of Massachusetts, Dartmouth, USA

2014     Robert Young Scholarship Award for Excellence in Research. Rhode Island College, USA

Teaching Experience:

MICR461 and MICR335 (University of Otago, NZ)

BIO211 and BIO241 (University of Massachusetts, Dartmouth, USA)




Smith, L.M., Hampton, H.G., Yevstigneyeva, M.S., Mahler, S., Paquet, Z.S.M., Fineran, P.C. (2023). CRISPR-Cas immunity is repressed by the LysR-type transcriptional regulator PigU. Nucleic Acids Research.

Smith, L.M. and Fineran, P.C. (2023). Phage capsid recognition triggers activation of a bacterial toxin-antitoxin defense system. Molecular Cell 83(2), 165-166.

Shearer, H.L., Pace, P.E., Smith, L.M., Fineran, P.C., Matthews, A.J., Camilli, A., Dickerhof, N., Hampton, M.B. (2023). Identification of Streptococcus pneumoniae genes associated with hypothiocyanous acid tolerance through genome-wide screening. Journal of Bacteriology 205(10).

Mahler, M., Malone, L.M., van den Berg, D.F., Smith, L.M., Brouns, S.J.J., and Fineran, P.C. (2023). An OmpW-dependent T4-like phage infects Serratia sp. ATCC 39006. Microbial Genomics 9.


Mayo-Muñoz, D., Smith, L.M., Garcia-Doval, C., Malone, L.M., Harding, K.R., Jackson, S.A., Hampton, H.G., Fagerlund, R.D., Gumy, L.F. and Fineran, P.C. (2022). Type III CRISPR–Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Molecular Cell 82(23).

Smith, L.M., Rey Campa, A. & Fineran, P.C.# (2022). Regulation of CRISPR-Cas expression and function. Chapter 10 in CRISPR: Biology and Applications, 145-162 ASM Press.


Rey Campa, A., Smith, L.M., Hampton, H.G., Sharma, S., Jackson, S.A., Bischler, T., Sharma, C.M., Fineran, P.C. (2021). "The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR–Cas immune systems." Nucleic Acids Research 49(16), 9508-9525.

Smith, L.M., Jackson, S.A., Gardner, P.P., Fineran, P.C. (2021). SorTn-seq: a high-throughput functional genomics approach to discover regulators of bacterial gene expression. Nature Protocols 16, 4382-4418.

Smith, L.M., Jackson, S.A., Malone, L.M., Ussher, J.E., Gardner, P.P., Fineran, P.C. (2021). The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nature Microbiology 6(2), 162-172.


Hampton, H., Smith, L.M., Ferguson, S., Meaden, S., Jackson, S.A., Fineran, P.C. (2020). Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Microbial Genomics 6(11). 


Birkholz, N., Fagerlund, R.D., Smith, L.M., Jackson, S.A., & Fineran, P.C. (2019). The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Research, 47(18), 9658-9665.

McCully, L.M., Bitzer, A.S., Seaton, S.C., Smith, L.M., & Silby, M.W. (2019). Interspecies Social Spreading: Interaction between two sessile soil bacteria leads to emergence of surface motility. mSphere 4(1), e00696-18.