Skip to Navigation Skip to Content Skip to Footer

Microbiology Logo Microbiology & Immunology
Te Tari Moromoroiti me te Ārai Mate

Dr Matthew McNeil

Current research:

The overarching goal of this research programme is focused on the development of novel treatment strategies to combat Mycobacterium tuberculosis, the causative agent of Tuberculosis and a significant cause of infectious disease morbidity and mortality.

Current research themes include:

i.   Determining the biological consequences of drug resistance in M. tuberculosis to identifying vulnerabilities that can be therapeutically exploited.

ii.  Genetic approaches for the identification and validation of novel drug targets in M. tuberculosis to aid drug discovery.

iii.  Understanding the interactions between antibiotic targets to rationally design novel drug combinations to treat M. tuberculosis.

This research utilizes a combination of molecular biology, microbiology, antimicrobial susceptibility testing and next generation sequencing. This work involves the use auxotrophic-avirulent PC2 approved strains of M. tuberculosis, virulent strains of M. tuberculosis that require PC3 containment and the fast-growing model species Mycobacterium smegmatis.

Who else is involved in this research?

Current post graduate students (Co-Supervised)


Natalie Waller


Heath Ryburn


Former post graduate students (Co-Supervised)


Cassie Chapman

Noon Seeto

Laura Keighley

Natalie Waller

Heath Ryburn


Cara Adolph 



Sir Charles Hercus Fellowship (HRC-NZ) (2022-2026)
Dysregulating metabolism to eradicate drug-resistant Mycobacterium tuberculosis
$582,826 (Principal Investigator)

Marsden-Project (Royal Society of New Zealand) (2021-2024)
How does allostery modulate bacterial pathogenesis?
$939,000 (Associate Investigator)

China-Maurice Wilkins Centre Collaborative Research Programme (2021-2023)
Exploiting synergistic interaction in energy metabolism to combat drug resistant pathogens
$527,253 (Co-Principal Associate Investigator)

HRC-NSFC Biomedical Collaboration Fund-Project (2020-2023)
Targeting succinate metabolism to produce new chemotherapeutic agents
$699,695 (Associate Investigator)

HRC-NZ Project Grant (2020-2023)
Combatting antimicrobial resistance with high throughput bacterial genetics
$1,199,272 (Primary Investigator)

Maurice Wilkins Centre Flexible Research Grant: Category 2 (2019-2021)
Exploring synthetically lethal interaction in mycobacterial bioenergetics
$9000 (Primary Investigator)

Maurice Wilkins Centre Flexible Research Grant: Category 2. (2019-2021)
Genetic characterisation of drug resistant M. tuberculosis to guide the therapeutic exploitation of collateral susceptibilities
$24000 (Primary Investigator)

Marsden Fast Start (Royal Society of New Zealand) (2018-2021)
Exploiting the costs of drug resistance to design new therapeutic regimens against M. tuberculosis
$300,000 (Primary Investigator)

HRC-NZ Programme Grant (2018-2020)
Targeting pathogen energetics to produce new antimicrobials.
Partial funding for years 1-2, $1,000,000 (Associate Investigator)


Previous Positions 

2015-2018: Postdoctoral Scientist, Infectious Disease Research Institute, Seattle, USA.

2013-2015: Postdoctoral Scientist, Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.

2012-2013: Postdoctoral Scientist, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

 Screen Shot 2020 05 27 at 11.35.31 AM

With MSc student Natalie Waller



Google Scholar:

* Denotes joint first author. # Denotes corresponding Author



Adolph C, McNeil MB and Cook GM. 2021. Impaired succinate oxidation prevents growth and influences drug susceptibility in Mycobacterium tuberculosis. BioRxiv.

McNeil MB, Ryburn HW, Tirados, Cheung CY and Cook GM. 2021. Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. BioRxiv.


Cheung CY, McNeil MB and Cook GM. 2021. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection. Journal of Antimicrobial Chemotherapy. in press.

McNeil MB, Keighley LM, Cook JR, Cheung CY and Cook GM. 2021. CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in Mycobacterium tuberculosis. Molecular Microbiology. 116(4). 1033-1043.

Hembre E, Early JV, Odingo J, Shelton C, Anoshchenko O, Guzman J, Flint L, Dennison D, McNeil MB, Korkegian A, Ovechkina Y, Ornstein P, Masquelin T, Hipskind PA and Parish T. 2021. Novel trifluoromethyl pyrimidinone compounds with activity against Mycobacterium tuberculosis. Frontiers in Chemistry, 9. 176.

Shelton C, McNeil MB, Early J, Ieorger T and Parish T. 2021. Deletion of Rv2571c confers resistance to arylamide compounds in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 65(5):e02334-20.


McNeil MB, O’Malley T, Dennison D, Shelton CD, Sundae B and Parish T. 2020. Multiple mutations in Mycobacterium tuberculosis MmpL3 increase resistance to MmpL3 inhibitors. mSphere.5(5).e00985-20.

McNeil, MB#. Ryburn, H. Harold, LK. Tirados, J. andCook, GM. 2020. Transcriptional inhibition of the F1F0-type ATP synthase has bactericidal consequences on the viability of mycobacteria. Antimicrobial Agents and Chemotherapy. 64(8).e00492-20

Shao M, McNeil MB, Cook GM and Lu X. 2020. MmpL3 inhibitors as antituberculosis drugs. European Journal of Medicinal Chemistry. 200:112390..


Hards, K. Adolph, C. Harold, LK. McNeil, MB. Cheung, CY. Jinich, A. Rhee, KY. and Cook, GM. 2019. Two for the price of one: Attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents. Prog Biophys Mol Biol. 13. 

McNeil MB# and Cook GM. 2019. Utilization of CRISPR interference to validate MmpL3 as a drug target in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 63(8)

McNeil MB, Chettiar S, Awasthi D and Parish T. 2019. Cell wall inhibitors increase the accumulation of rifampicin in Mycobacterium tuberculosis. Access Microbiology. 1(1).

Robertson GT, Ektnitphong VA, Scherman MS, McNeil MB + 13 Authors and Lenaerts AJ. 2019. Efficacy and improved resistance potential of a cofactor-independent InhA inhibitor of Mycobacterium tuberculosis in a C3HeB/FeJ mouse model with advanced lung pathology. Antimicrobial Agents and Chemotherapy. 63(4).


Xia Yi, Zhou Y, Carter DS, McNeil MB + 19 Authors and Alley MRK. 2018. Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Life Science Alliance. 1(3). e20180025.


McNeil MB, Dennison D, Shelton C, Flint L, Korkegian A and Parish T. 2017. Mechanisms of resistance against NITD-916, a direct inhibitor of Mycobacterium tuberculosis InhA. Tuberculosis.107. 133-136.

McNeil MB, Dennison D, Shelton C and Parish T. 2017. In vitro isolation and characterisation of oxazolidinone resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy.61(10). e01296-17.

McNeil MB, Dennison D and Parish T. 2017. Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis. Microbiology. 163. 1065-1070.


Hampton HG, McNeil MB*, Paterson TJ, Ney B, Williamson NR, Easingwood RA, Bostina M, Salmond GP, Fineran PC. 2016. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. Microbiology. 162(2). 1047-58.


Richter C, Dy RL, Mckenzie RE, Watson BNJ, Taylor C, Chang JT, McNeil MB, Staals RHJ and Fineran PC. 2014. Priming in the Type 1-F CRISPR-Cas system triggers hyperactive strand independent spacer acquisition nearby the primed protospacer. Nucleic Acids Research. 42(13). 8516-26.

McNeil MB, Hampton HG, Hards KJ, Watson BNJ, Cook GM and Fineran PC. 2014. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria. FEBS Letters. 588(3): 414-421.


Fineran PC, +12 other authors. 2013. Draft genome sequence of Serratia sp. strain ATCC 39006, a model bacterium for analysis of the biosynthesis and regulation of prodigiosin, a carbapenem and gas vesicles. Genome Announcements. 1(6): e0139-13.

McNeil MB and Fineran PC. 2013. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity. Biochemistry. 52(43): 7628-7640.

McNeil MB, Iglesias Cans M, Clulow JS and Fineran PC. 2013. YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor, SdhE (YgfY). Microbiology. 159: 1352-1365.


McNeil MB, and Fineran PC. 2012. Prokaryotic assembly factors for the attachment of flavins to complex II. BBA Bioenergetics. 1827(5): 637-647.

McNeil MB, Clulow JS, Wilf N, Salmond GPC and Fineran PC. 2012. SdhE is a conserved protein required for the flavinylation of succinate dehydrogenase in bacteria. Journal of Biological Chemistry. 287(22): 18418-18428.


Gristwood T, McNeil MB, Clulow JS, Salmond GPC and Fineran PC. 2011. PigS and PigP Regulate Prodigiosin Biosynthesis in Serratia via Differential Control of Divergent Operons, Which Include Predicted Transporters of Sulfur-Containing Molecules. Journal of Bacteriology. 193:1076-1085.